IntroductionIt has been more than one year since the first reported case of the novel coronavirus disease 2019 COVID-19, which has already cost more than 2 million lives Fortunately, vaccines against severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 have been developed with record-breaking speed and vaccine programs are ongoing worldwide to take the pandemic under During this expansion of research focus from treatment to prevention of COVID-19, the immune evasion mechanism and immunopathogenic nature of SARS-CoV-2 adds uncertainty to the efficacy of this global vaccination During natural infection, SARS-CoV-2 could avoid the innate antiviral response mediated by interferons IFNs via an array of possible strategies,4,5 which not only leads to viral replication and spreading but also could delay or impair the adaptive immune response including T cell and antibody The significant prevalence of SARS-CoV-2 RNA re-positive cases among discharged patients further raises the concern about the effectiveness and persistency of immune responses after natural Recent long-term follow-up surveys report significant decrease of SARS-CoV-2 antibody titers 5 to 8 months after infection,10,11,12 but its correlation with reduced capacity of SARS-CoV-2 neutralization and immune memory is still vaccination, equally important is the recovery and rehabilitation of COVID-19 Mild cases usually do not require hospitalization but may share similar long-lasting symptoms or discomforts with severe cases, which may reduce life quality after recovery from Also, cardiac magnet resonance imaging cMRI screening revealed surprisingly high prevalence of subclinical myocardial inflammation and fibrosis in recently recovered Due to the overloading of medical systems and the fear of in-hospital transmission, long-term follow-up studies of the structural and functional recovery of COVID-19-involved organs are still this prospective cohort study of recovered COVID-19 patients from Xiangyang, China, we aimed to assess long-term antibody response at 12 months after infection and comprehensively evaluate the structural and functional recovery of the lung and cardiovascular systems. We also attempted to identify potential risk factors associated with those long-term January 15 through 31 March 2020, a total of 307 patients were diagnosed with COVID-19 at Xiangyang Central Hospital, which represented of 549 cases in the downtown and of 1175 cases city-wide. During hospitalization, 12 patients succumbed to COVID-19-induced respiratory distress or lethal infection, which translated to a mortality rate of in line with the citywide mortality rate of 40/1175. All 295 survivors were invited to participate in this study and the final cohort consisted of 121 survivors including 19 recovered from severe COVID-19 Supplementary Fig. 1. Clinical procedures were performed at Xiangyang Central Hospital between 25 December 2020 and 29 January and clinical features of participantsDemographic-wise, this cohort consisted of middle-aged Chinese population with an overall comorbidity prevalence of including hypertension and diabetes as the most common preexisting conditions, which was typical for the local agricultural and industrial population with a preference of high-salt diets Table 1. The participants of this study were among the earliest confirmed COVID-19 patients with virological confirmation dates as early as January 19, 2020. Standard of care consisted of antivirals, antibiotics, immunomodulants and supplemental oxygen was given to participants following CDC guidelines Supplementary Table 1. Only 1 in this cohort received invasive ventilation Supplementary Table 1, which reflected the dismal mortality rate among critically ill patients relying on respiratory Of note, the basic characteristics of this cohort were comparable with the entire population of COVID-19 survivors treated at this hospital Supplementary Table 2.Table 1 Characteristics of participants by COVID-19 severityFull size tableAfter stratifying the cohort by severity graded according to the guideline,21 severe groups had higher ages, less females, and more comorbidities Table 1. Severe group also presented more symptoms at admission, and received more aggressive immunomodulatory therapies, supplemental oxygen, and ICU care during hospitalization Supplementary Table 1. Both severe and non-severe groups share similar lengths since symptom onset, while the severe group had shorter periods since recovery because of longer hospitalization Table 1.Long-lasting SARS-CoV-2 antibody response 1-year after infectionFirst, blood samples were screened by colloidal gold-based immunochromatographic assays GICA separately detecting IgM and IgG against At a median of 11 months post- infection, only 4% 95% CI, 2–10% participants returned positive IgM results, which included both positive and weakly positive results, while 62% 95% CI, 54–71% were IgG positive Table 1, comparing to prevalence of IgM among pre-discharge samples from the same Severe group showed higher prevalence of IgG, while the prevalence of IgM was equally low in both groups Table 1.Next, the concentration of total antibodies against the receptor-binding domain of SARS-CoV-2 spike protein RBD was quantitatively measured by chemiluminescence microparticle immunoassays CMIA.24 Although signal/cutoff S/CO ratios were lower in non-severe group, all but 1 of the results were above the positive diagnostic threshold of S/CO = when all 100 samples of unexposed individuals, which were randomly chosen from sera of in-hospital patients who had negative results from multiple PCR and serological tests for SARS-CoV-2 before and after the date of serum collection, had S/CO values participants were exposed to SARS-CoV-2 and diagnosed with COVID-19 during January to March 2020. During their COVID-19 disease courses, they have received combinations of therapies including antivirals, immunomodulatory agents, antibiotics, supplemental oxygen, and ICU outcomes of this study were immunity against SARS-CoV-2 and functional recovery of the lung and other involved organs. Immunity against SARS-CoV-2 was assessed by multiple antibody assays. The colloidal gold-based test kit gave positive, weak positive, and negative readout of anti-SARS-CoV-2 IgM and IgG separately. The quantitative chemiluminescence microparticle immunoassay for antibodies against SARS-CoV-2 RBD was performed according to manufacturer’s protocol and previous publication,24 and the results were deemed positive if the signal/cutoff S/CO ratio ≥1. For ELISA tests, results were recorded and analyzed as continuous variables and the limit of sensitivity was calculated as mean + 2 × SD of 20 serum samples negative for SARS-CoV-2 antibodies in chemiluminescence assays. Functional recovery of the lung was assessed based on 1 current CT images comparing to images taken before discharge and during earlier follow-ups, 2 pulmonary function test results, and 3 six-minute walk test results. Recovery of the heart was assessed based on ECG, echocardiogram, and cardiac MRI scans. Recovery of other potentially involved organs were assessed by laboratory tests Roche Diagnostics.Sample sizeAn initial target sample size of 108 was determined based on the assumption of a 15 ratio of severe and non-severe COVID-19 patient enrollment and α = This sample size was calculated to have 90% power to detect a 10% difference of antibody concentrations. The final sample size exceeded the target in both analysisQuantitative data were presented in violin plots with all data points shown. Patient characteristics and clinical data were summarized as incidence with prevalence or median with IQR and were assessed with Fisher’s exact test dichotomous variables or χ2 test variables with more than two categories for categorical variables and Mann–Whitney U test for continuous variables. Antibody concentrations were log-transformed before being analyzed as continuous variables. The difference of antibody concentrations between groups were assessed by the Mann–Whitney U test two groups or Kruskal–Wallis test with post hoc comparisons more than two groups. Special tests were mentioned in figure legends. Correlation was assessed by Spearman’s ρ test. Linearity between two factors was assessed by simple linear regression. Generalized linear models were used to assess factors associated with antibody titers. Analyses were performed using SPSS 26 IBM or Prism 9 GraphPad. Missing data were excluded pairwise from analyses. Significance was evaluated at α = .05 and all tests were 2-sided. *p < **p < ***p < Data availabilityReasonable requests for original dataset and clinical documents would be fulfilled by Dr. Peng Hong P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 2020.Article CAS PubMed PubMed Central Google Scholar Parker, E. P. K., Shrotri, M. & Kampmann, B. Keeping track of the SARS-CoV-2 vaccine pipeline. Nat. Rev. Immunol. 20, 650 2020.Article CAS PubMed Google Scholar Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 2021.Article CAS PubMed PubMed Central Google Scholar Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036– 2020.Article CAS PubMed PubMed Central Google Scholar Lei, X. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 11, 3810 2020.Article CAS PubMed PubMed Central Google Scholar Oved, K. et al. Multi-center nationwide comparison of seven serology assays reveals a SARS-CoV-2 non-responding seronegative subpopulation. EClinicalMedicine 29, 100651 2020.Article PubMed Google Scholar Anna, F. et al. High seroprevalence but short-lived immune response to SARS-CoV-2 infection in Paris. Eur. J. Immunol. 51, 180–190 2021.Article CAS PubMed Google Scholar Lu, J. et al. Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR. EBioMedicine 59, 102960 2020.Article PubMed PubMed Central Google Scholar Yang, C. et al. Viral RNA level, serum antibody responses, and transmission risk in recovered COVID-19 patients with recurrent positive SARS-CoV-2 RNA test results a population-based observational cohort study. Emerg. Microbes Infect. 9, 2368–2378 2020.Article CAS PubMed PubMed Central Google Scholar Choe, P. G. et al. Waning antibody responses in asymptomatic and symptomatic SARS-CoV-2 infection. Emerg. Infect. Dis. 27, 327–329 2021.Article CAS PubMed Central Google Scholar Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital a cohort study. Lancet 397, 220–232 2021.Article CAS PubMed PubMed Central Google Scholar Self, W. H. et al. Decline in SARS-CoV-2 antibodies after mild infection among frontline health care personnel in a multistate hospital network - 12 states, April-August 2020. Morb. Mortal. Wkly. Rep. 69, 1762–1766 2020.Article CAS Google Scholar Wajnberg, A. et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370, 1227–1230 2020.Article CAS PubMed PubMed Central Google Scholar Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 2021.Article CAS PubMed Google Scholar Yelin, D. et al. Long-term consequences of COVID-19 research needs. Lancet Infect. Dis. 20, 1115–1117 2020.Article CAS PubMed PubMed Central Google Scholar Gandhi, R. T., Lynch, J. B. & Del Rio, C. Mild or moderate Covid-19. N. Engl. J. Med. 383, 1757–1766 2020.Article CAS PubMed Google Scholar Carfi, A., Bernabei, R. & Landi, F., Gemelli Against, Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605 2020.Article CAS PubMed PubMed Central Google Scholar Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 COVID-19. JAMA Cardiol. 5, 1265–1273 2020.Article PubMed PubMed Central Google Scholar Cortinovis, M., Perico, N. & Remuzzi, G. Long-term follow-up of recovered patients with COVID-19. Lancet 397, 173–175 2021.Article CAS PubMed PubMed Central Google Scholar Dupuis, C. et al. Association between early invasive mechanical ventilation and day-60 mortality in acute hypoxemic respiratory failure related to coronavirus disease-2019 pneumonia. Crit. Care Explor 3, e0329 2021.Article PubMed PubMed Central Google Scholar NHCPRC. National Health Commission of the People’s Republic of China. Chinese management guideline for COVID-19 version 7 [in Chinese]. 2020.Pan, Y. et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J. Infect. 81, e28–e32 2020.Article CAS PubMed PubMed Central Google Scholar Shen, L. et al. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression. Emerg. Microbes Infect. 9, 1096–1101 2020.Article CAS PubMed PubMed Central Google Scholar Liu, W. et al. Clinical application of chemiluminescence microparticle immunoassay for SARS-CoV-2 infection diagnosis. J. Clin. Virol. 130, 104576 2020.Article CAS PubMed PubMed Central Google Scholar Atyeo, C. et al. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity 53, 524– 2020.Article CAS PubMed PubMed Central Google Scholar Long, Q. X. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26, 845–848 2020.Article CAS PubMed Google Scholar Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, 11 e20201181 2020.Article PubMed CAS Google Scholar Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 2021.Article CAS PubMed Google Scholar Wang, P. et al. Antibody resistance of SARS-CoV-2 variants and Nature 593, 130–135 2021.Article CAS PubMed Google Scholar McCrohon, J. A. et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108, 54–59 2003.Article CAS PubMed Google Scholar Chaowu, Y. & Li, L. Histopathological basis of myocardial late gadolinium enhancement in patients with systemic hypertension. Circulation 130, 2210–2212 2014.Article PubMed Google Scholar Wadhera, R. K. et al. Variation in COVID-19 hospitalizations and deaths across New York City boroughs. JAMA 323, 2192–2195 2020.Article CAS PubMed PubMed Central Google Scholar Paremoer, L., Nandi, S., Serag, H. & Baum, F. Covid-19 pandemic and the social determinants of health. BMJ 372, n129 2021.Article PubMed PubMed Central Google Scholar Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 COVID-19 outbreak in China summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 323, 1239–1242 2020.Article CAS PubMed Google Scholar Ji, Y., Ma, Z., Peppelenbosch, M. P. & Pan, Q. Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob. Health 8, e480 2020.Article PubMed PubMed Central Google Scholar Li, Q. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182, 1284– 2020.Article CAS PubMed PubMed Central Google Scholar Trump, S. et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat. Biotechnol. 39, 705–716 2021.Article CAS PubMed Google Scholar Hu, F. et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol. Immunol. 17, 1119–1125 2020.Article CAS PubMed Google Scholar Naidu, S. B. et al. The high mental health burden of "Long COVID" and its association with on-going physical and respiratory symptoms in all adults discharged from hospital. Eur. Respir. J. 57, 2004364 2021.Article CAS PubMed PubMed Central Google Scholar Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27, 626–631 2021.Article CAS PubMed PubMed Central Google Scholar Augustin, M. et al. Post-COVID syndrome in non-hospitalised patients with COVID-19 a longitudinal prospective cohort study. Lancet Reg. Health Eur. 6, 100122 2021.Article PubMed PubMed Central Google Scholar Peghin, M. et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin. Microbiol. Infect. 27, 1507–1513 2021.Article CAS PubMed PubMed Central Google Scholar Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627 2020.Article PubMed PubMed Central Google Scholar Reichard, R. R. et al. Neuropathology of COVID-19 a spectrum of vascular and acute disseminated encephalomyelitis ADEM-like pathology. Acta Neuropathol. 140, 1–6 2020.Article CAS PubMed PubMed Central Google Scholar Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients a UK-wide surveillance study. Lancet Psychiatry 7, 875–882 2020.Article PubMed PubMed Central Google Scholar Francone, M. et al. Chest CT score in COVID-19 patients correlation with disease severity and short-term prognosis. Eur. Radiol. 30, 6808–6817 2020.Article CAS PubMed PubMed Central Google Scholar Holland, A. E. et al. An official European Respiratory Society/American Thoracic Society technical standard field walking tests in chronic respiratory disease. Eur. Respir. J. 44, 1428–1446 2014.Article PubMed Google Scholar Hajiro, T. et al. Analysis of clinical methods used to evaluate dyspnea in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 158, 1185–1189 1998.Article CAS PubMed Google Scholar Graham, B. L. et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 200, e70–e88 2019.Article PubMed PubMed Central Google Scholar Milanese, M. et al. Suggestions for lung function testing in the context of COVID-19. Respir. Med. 177, 106292 2020.Article PubMed PubMed Central Google Scholar Download referencesAcknowledgementsWe thank Chun Mao Xiangyang Central Hospital and Juan Xiao Hubei University of Arts and Science for organization and administrative support of patient recruitments and clinical examinations. We also thank Rongjie Zhao, Zhangli Li Thermo Fisher Scientific China, Shanghai, China, and GenScript Nanjing, China for technical support and protocol optimization. This work was supported by Xiangyang Science and Technology Bureau 2020YL10, 2020YL14, 2020YL17, and 2020YL39, National Natural Science Foundation of China 31501116, Shenzhen Science and Technology Innovation Commission JCYJ20190809100005672, Shenzhen Sanming Project of Medicine SZSM201911013, and US Department of Veterans Affairs 5I01BX001353.Author informationAuthor notesThese authors contributed equally Yan Zhan, Yufang Zhu, Shanshan Wang, Shijun Jia, Yunling Gao, Yingying LuAuthors and AffiliationsDepartment of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, ChinaYan Zhan, Shanshan Wang, Peng Du, Hao Yu, Chang Liu & Peijun LiuDepartment of Laboratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, ChinaYufang Zhu, Caili Zhou & Ran LiangDepartment of Radiology and Medical Imaging, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, ChinaShijun Jia & Feng WuDepartment of Research Affairs, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, ChinaYunling Gao & Jin ChengDepartment of Nephrology, Center of Nephrology and Urology, Sun Yat-sen University Seventh Hospital, Shenzhen, Guangdong, 518107, ChinaYingying Lu, Zhihua Zheng & Peng HongDepartment of Biomedical Science, Shenzhen Research Institute, City University of Hong Kong, Kowloon Tong, Hong Kong, ChinaYingying LuDepartment of Rehabilitation Medicine, Xiangzhou District People’s Hospital, Xiangyang, Hubei, 441000, ChinaDingwen SunDepartment of Rehabilitation Medicine, Gucheng People’s Hospital, Affiliated Gucheng Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441700, ChinaXiaobo WangDivision of Quality Control, Xiangyang Central Blood Station, Xiangyang, Hubei, 441000, ChinaZhibing HouDepartment of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, ChinaQiaoqiao Hu & Yulan ZhengDepartment of Pathology, Mount Sinai St. Luke’s Roosevelt Hospital Center, New York, NY, 10025, USAMiao CuiDepartment of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, ChinaGangling TongDepartment of Dermatology, Sun Yat-sen University Seventh Hospital, Shenzhen, Guangdong, 518107, ChinaYunsheng Xu & Linyu ZhuDivision of Research and Development, US Department of Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, 11209, USAPeng HongDepartment of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USAPeng HongAuthorsYan ZhanYou can also search for this author in PubMed Google ScholarYufang ZhuYou can also search for this author in PubMed Google ScholarShanshan WangYou can also search for this author in PubMed Google ScholarShijun JiaYou can also search for this author in PubMed Google ScholarYunling GaoYou can also search for this author in PubMed Google ScholarYingying LuYou can also search for this author in PubMed Google ScholarCaili ZhouYou can also search for this author in PubMed Google ScholarRan LiangYou can also search for this author in PubMed Google ScholarDingwen SunYou can also search for this author in PubMed Google ScholarXiaobo WangYou can also search for this author in PubMed Google ScholarZhibing HouYou can also search for this author in PubMed Google ScholarQiaoqiao HuYou can also search for this author in PubMed Google ScholarPeng DuYou can also search for this author in PubMed Google ScholarHao YuYou can also search for this author in PubMed Google ScholarChang LiuYou can also search for this author in PubMed Google ScholarMiao CuiYou can also search for this author in PubMed Google ScholarGangling TongYou can also search for this author in PubMed Google ScholarZhihua ZhengYou can also search for this author in PubMed Google ScholarYunsheng XuYou can also search for this author in PubMed Google ScholarLinyu ZhuYou can also search for this author in PubMed Google ScholarJin ChengYou can also search for this author in PubMed Google ScholarFeng WuYou can also search for this author in PubMed Google ScholarYulan ZhengYou can also search for this author in PubMed Google ScholarPeijun LiuYou can also search for this author in PubMed Google ScholarPeng HongYou can also search for this author in PubMed Google ScholarContributionsY. Zhan and conceptualized the study; Y. Zhan, and recruited patients, performed physical examinations, and abstracted historic data; Y. Zhu, and performed laboratory tests and interpreted results; and conducted sonographic and radiological examinations and interpreted results; and Y. Zheng conducted PFT and interpreted results; Y. Zhan, and conducted functional tests, assessed rehabilitation status and interpreted data; and interpreted metabolic and immunological findings; Y. Zhan, and conducted data quality checks and performed statistical analyses; Y. Zhan and wrote the manuscript. All authors read and approved the final authorsCorrespondence to Feng Wu, Yulan Zheng, Peijun Liu or Peng declarations Competing interests The authors declare no competing interests. Supplementary informationRights and permissions Open Access This article is licensed under a Creative Commons Attribution International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit Reprints and PermissionsAbout this articleCite this articleZhan, Y., Zhu, Y., Wang, S. et al. SARS-CoV-2 immunity and functional recovery of COVID-19 patients 1-year after infection. Sig Transduct Target Ther 6, 368 2021. citationReceived 06 March 2021Revised 16 September 2021Accepted 20 September 2021Published 13 October 2021DOI
KartuTes Antigen COVID Rapid SARS-CoV-2 Kartu Tes Antigen SARS-CoV-2 Cepat. Petunjuk Penggunaan Penyedia Layanan Kesehatan. Hanya untuk penggunaan diagnostik in vitro; Hanya untuk digunakan di bawah Izin Penggunaan Darurat (EUA) Untuk digunakan dengan spesimen usap hidung anterior; Penggunaan yang dimaksudkan
. 2022 Jan;941388-392. doi Epub 2021 Aug 31. Affiliations PMID 34415572 PMCID PMC8426838 DOI Free PMC article Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity Ramona Dolscheid-Pommerich et al. J Med Virol. 2022 Jan. Free PMC article Abstract In the current COVID-19 pandemic, a better understanding of the relationship between merely binding and functionally neutralizing antibodies is necessary to characterize protective antiviral immunity following infection or vaccination. This study analyzes the level of correlation between the novel quantitative EUROIMMUN Anti-SARS-CoV-2 QuantiVac ELISA IgG and a microneutralization assay. A panel of 123 plasma samples from a COVID-19 outbreak study population, preselected by semiquantitative anti-SARS-CoV-2 IgG testing, was used to assess the relationship between the novel quantitative ELISA IgG and a microneutralization assay. Binding IgG targeting the S1 antigen was detected in 106 samples using the QuantiVac ELISA, while 89 samples showed neutralizing antibody activity. Spearman's correlation analysis demonstrated a strong positive relationship between anti-S1 IgG levels and neutralizing antibody titers rs = p < High and low anti-S1 IgG levels were associated with a positive predictive value of for high-titer neutralizing antibodies and a negative predictive value of for low-titer neutralizing antibodies, respectively. These results substantiate the implementation of the QuantiVac ELISA to assess protective immunity following infection or vaccination. Keywords COVID-19; ELISA; SARS-CoV-2; microneutralization. © 2021 The Authors. Journal of Medical Virology Published by Wiley Periodicals LLC. Conflict of interest statement Sandra Saschenbrecker and Katja Steinhagen are employed by EUROIMMUN Medizinische Labordiagnostika AG, a manufacturer of diagnostic reagents and co‐owner of a patent application pertaining to the detection of antibodies to the SARS‐CoV‐2 S1 antigen. Katja Steinhagen is designated as an inventor. The other authors declare that there are no conflict of interests. Figures Figure 1 Correlation between quantitative ELISA and microneutralization assay. Binding anti‐SARS‐CoV‐2 S1 IgG was determined quantitatively using the QuantiVac ELISA and titers of neutralizing antibodies were determined using the CPE reduction NT assay n = 123. Neutralization titers correspond to reciprocal plasma dilutions protecting 50% of the wells at incubation with 100 TCID50 of SARS‐CoV‐2. Samples with a cytopathic effect CPE equal or similar to the negative control are depicted on the y‐axis. Dotted and dashed lines indicate borderline and positivity cut‐offs, respectively. r s, Spearman rank‐order correlation coefficient Similar articles Inference of SARS-CoV-2 spike-binding neutralizing antibody titers in sera from hospitalized COVID-19 patients by using commercial enzyme and chemiluminescent immunoassays. Valdivia A, Torres I, Latorre V, Francés-Gómez C, Albert E, Gozalbo-Rovira R, Alcaraz MJ, Buesa J, Rodríguez-Díaz J, Geller R, Navarro D. Valdivia A, et al. Eur J Clin Microbiol Infect Dis. 2021 Mar;403485-494. doi Epub 2021 Jan 6. Eur J Clin Microbiol Infect Dis. 2021. PMID 33404891 Free PMC article. SARS-CoV-2 Serologic Assays in Control and Unknown Populations Demonstrate the Necessity of Virus Neutralization Testing. Rathe JA, Hemann EA, Eggenberger J, Li Z, Knoll ML, Stokes C, Hsiang TY, Netland J, Takehara KK, Pepper M, Gale M Jr. Rathe JA, et al. J Infect Dis. 2021 Apr 8;22371120-1131. doi J Infect Dis. 2021. PMID 33367830 Free PMC article. A highly specific and sensitive serological assay detects SARS-CoV-2 antibody levels in COVID-19 patients that correlate with neutralization. Peterhoff D, Glück V, Vogel M, Schuster P, Schütz A, Neubert P, Albert V, Frisch S, Kiessling M, Pervan P, Werner M, Ritter N, Babl L, Deichner M, Hanses F, Lubnow M, Müller T, Lunz D, Hitzenbichler F, Audebert F, Hähnel V, Offner R, Müller M, Schmid S, Burkhardt R, Glück T, Koller M, Niller HH, Graf B, Salzberger B, Wenzel JJ, Jantsch J, Gessner A, Schmidt B, Wagner R. Peterhoff D, et al. Infection. 2021 Feb;49175-82. doi Epub 2020 Aug 21. Infection. 2021. PMID 32827125 Free PMC article. Quantitative SARS-CoV-2 Serology in Children With Multisystem Inflammatory Syndrome MIS-C. Rostad CA, Chahroudi A, Mantus G, Lapp SA, Teherani M, Macoy L, Tarquinio KM, Basu RK, Kao C, Linam WM, Zimmerman MG, Shi PY, Menachery VD, Oster ME, Edupuganti S, Anderson EJ, Suthar MS, Wrammert J, Jaggi P. Rostad CA, et al. Pediatrics. 2020 Dec;1466e2020018242. doi Epub 2020 Sep 2. Pediatrics. 2020. PMID 32879033 Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Banga Ndzouboukou JL, Zhang YD, Fan XL. Banga Ndzouboukou JL, et al. Curr Med Sci. 2021 Dec;4161052-1064. doi Epub 2021 Dec 21. Curr Med Sci. 2021. PMID 34935114 Free PMC article. Review. Cited by Impact of Health Workers' Choice of COVID-19 Vaccine Booster on Immunization Levels in Istanbul, Turkey. Ören MM, Canbaz S, Meşe S, Ağaçfidan A, Demir ÖS, Karaca E, Doğruyol AR, Otçu GH, Tükek T, Özgülnar N. Ören MM, et al. Vaccines Basel. 2023 May 3;115935. doi Vaccines Basel. 2023. PMID 37243039 Free PMC article. Development and validity assessment of ELISA test with recombinant chimeric protein of SARS-CoV-2. Fernandez Z, de Arruda Rodrigues R, Torres JM, Marcon GEB, de Castro Ferreira E, de Souza VF, Sarti EFB, Bertolli GF, Araujo D, Demarchi LHF, Lichs G, Zardin MU, Gonçalves CCM, Cuenca V, Favacho A, Guilhermino J, Dos Santos LR, de Araujo FR, Silva MR. Fernandez Z, et al. J Immunol Methods. 2023 May 11;519113489. doi Online ahead of print. J Immunol Methods. 2023. PMID 37179011 Free PMC article. Dynamics of Antibody Responses after Asymptomatic and Mild to Moderate SARS-CoV-2 Infections Real-World Data in a Resource-Limited Country. Sayabovorn N, Phisalprapa P, Srivanichakorn W, Chaisathaphol T, Washirasaksiri C, Sitasuwan T, Tinmanee R, Kositamongkol C, Nimitpunya P, Mepramoon E, Ariyakunaphan P, Woradetsittichai D, Chayakulkeeree M, Phoompoung P, Mayurasakorn K, Sookrung N, Tungtrongchitr A, Wanitphakdeedecha R, Muangman S, Senawong S, Tangjittipokin W, Sanpawitayakul G, Nopmaneejumruslers C, Vamvanij V, Auesomwang C. Sayabovorn N, et al. Trop Med Infect Dis. 2023 Mar 23;84185. doi Trop Med Infect Dis. 2023. PMID 37104311 Free PMC article. Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Ioannou P, Katsigiannis A, Papakitsou I, Kopidakis I, Makraki E, Milonas D, Filippatos TD, Sourvinos G, Papadogiannaki M, Lydaki E, Chamilos G, Kofteridis DP. Ioannou P, et al. Viruses. 2023 Mar 15;153756. doi Viruses. 2023. PMID 36992465 Free PMC article. Characterisation of the Antibody Response in Sinopharm BBIBP-CorV Recipients and COVID-19 Convalescent Sera from the Republic of Moldova. Ulinici M, Suljič A, Poggianella M, Milan Bonotto R, Resman Rus K, Paraschiv A, Bonetti AM, Todiras M, Corlateanu A, Groppa S, Ceban E, Petrovec M, Marcello A. Ulinici M, et al. Vaccines Basel. 2023 Mar 13;113637. doi Vaccines Basel. 2023. PMID 36992221 Free PMC article. References Krammer F, Simon F. Serology assays to manage COVID‐19. Science. 2020;3681060‐1061. - PubMed Lee CY, Lin RTP, Renia L, Ng LFP. Serological approaches for COVID‐19 Epidemiologic perspective on surveillance and control. Front Immunol. 2020;11879. - PMC - PubMed Theel ES, Slev P, Wheeler S, Couturier MR, Wong SJ, Kadkhoda K. The role of antibody testing for SARS‐CoV‐2 is there one? J Clin Microbiol. 2020;5858. - PMC - PubMed Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS‐CoV‐2. Nature. 2020;584443‐449. - PMC - PubMed Rogers TF, Zhao F, Huang D, et al. Isolation of potent SARS‐CoV‐2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369956‐963. - PMC - PubMed Publication types MeSH terms Substances LinkOut - more resources Full Text Sources Europe PubMed Central Ovid Technologies, Inc. PubMed Central Wiley Medical Genetic Alliance Miscellaneous NCI CPTAC Assay Portal
Beritadan foto terbaru Anti SARS-CoV-2 Kuantitatif - Prodia Hadirkan Pemeriksaan Anti SARS-CoV-2 Kuantitatif (S-RBD) Bagi Penyintas Covid-19
. 2021 Mar 19;594e03149-20. doi Print 2021 Mar 19. Affiliations PMID 33483360 PMCID PMC8092751 DOI Free PMC article Quantitative Measurement of Anti-SARS-CoV-2 Antibodies Analytical and Clinical Evaluation Victoria Higgins et al. J Clin Microbiol. 2021. Free PMC article Abstract The severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 is the causative agent of coronavirus disease 2019 COVID-19. Molecular-based testing is used to diagnose COVID-19, and serologic testing of antibodies specific to SARS-CoV-2 is used to detect past infection. While most serologic assays are qualitative, a quantitative serologic assay was recently developed that measures antibodies against the S protein, the target of vaccines. Quantitative antibody determination may help determine antibody titer and facilitate longitudinal monitoring of the antibody response, including antibody response to vaccines. We evaluated the quantitative Roche Elecsys anti-SARS-CoV-2 S assay. Specimens from 167 PCR-positive patients and 103 control specimens were analyzed using the Elecsys anti-SARS-CoV-2 S assay on the cobas e411 Roche Diagnostics. Analytical evaluation included assessing linearity, imprecision, and analytical sensitivity. Clinical evaluation included assessing clinical sensitivity, specificity, cross-reactivity, positive predictive value PPV, negative predictive value NPV, and serial sampling from the same patient. The Elecsys anti-SARS-CoV-2 S assay exhibited its highest sensitivity at 15 to 30 days post-PCR positivity and exhibited no cross-reactivity, a specificity and PPV of 100%, and an NPV between and at ≥14 days post-PCR positivity, depending on the seroprevalence estimate. Imprecision was 30, 0 to 14, and ≥14 days post-PCR positivity for the quantitative Roche Elecsys anti-SARS-CoV-2 S assay using serum or plasma samples collected from 167 patients confirmed SARS-CoV-2 positive within the previous 0 to 73 days. FIG 2 Anti-SARS-CoV-2 antibody response by days post-PCR positivity in five patients as measured by the quantitative Roche Elecsys anti-SARS-CoV-2 S assay. Similar articles Anti-SARS-CoV-2 IgM improves clinical sensitivity early in disease course. Higgins V, Fabros A, Wang XY, Bhandari M, Daghfal DJ, Kulasingam V. Higgins V, et al. Clin Biochem. 2021 Apr;901-7. doi Epub 2021 Jan 19. Clin Biochem. 2021. PMID 33476578 Free PMC article. Analytical and Clinical Evaluation of the Automated Elecsys Anti-SARS-CoV-2 Antibody Assay on the Roche cobas e602 Analyzer. Chan CW, Parker K, Tesic V, Baldwin A, Tang NY, van Wijk XMR, Yeo KJ. Chan CW, et al. Am J Clin Pathol. 2020 Oct 13;1545620-626. doi Am J Clin Pathol. 2020. PMID 32814955 Free PMC article. Head-to-Head Comparison of Two SARS-CoV-2 Serology Assays. Merrill AE, Jackson JB, Ehlers A, Voss D, Krasowski MD. Merrill AE, et al. J Appl Lab Med. 2020 Nov 1;561351-1357. doi J Appl Lab Med. 2020. PMID 32717056 Free PMC article. [SARS-CoV-2 and Microbiological Diagnostic Dynamics in COVID-19 Pandemic]. Erensoy S. Erensoy S. Mikrobiyol Bul. 2020 Jul;543497-509. doi Mikrobiyol Bul. 2020. PMID 32755524 Review. Turkish. Performance of Elecsys Anti-SARS CoV-2 Roche and VIDAS Anti-SARS CoV-2 Biomérieux for SARS-CoV-2 Nucleocapsid and Spike Protein Antibody Detection. Inés RM, Gabriela HTM, Paula CM, Magdalena TM, Jimena A, Salome KB, Javier AJ, Sebastián B, Lorena S, Adrián DL, Elisa R, Mauricio B, Tersita BM, Verónica GS, Beatriz IM. Inés RM, et al. EJIFCC. 2022 Aug 8;332159-165. eCollection 2022 Aug. EJIFCC. 2022. PMID 36313907 Free PMC article. Review. Cited by Association between reactogenicity and immunogenicity after BNT162b2 booster vaccination a secondary analysis of a prospective cohort study. Jorda A, Bergmann F, Ristl R, Radner H, Sieghart D, Aletaha D, Zeitlinger M. Jorda A, et al. Clin Microbiol Infect. 2023 May 25S1198-743X2300252-5. doi Online ahead of print. Clin Microbiol Infect. 2023. PMID 37244466 Free PMC article. Variation in antibody titers determined by Abbott and Roche Elecsys SARS-CoV-2 assays in vaccinated healthcare workers. Nakai M, Yokoyama D, Sato T, Sato R, Kojima C, Shimosawa T. Nakai M, et al. Heliyon. 2023 Jun;96e16547. doi Epub 2023 May 22. Heliyon. 2023. PMID 37235203 Free PMC article. Anti-N SARS-CoV-2 assays for evaluation of natural viral infection. Gaeta A, Angeloni A, Napoli A, Pucci B, Cinti L, Roberto P, Colaiacovo F, Berardelli E, Farina A, Antonelli G, Anastasi E. Gaeta A, et al. J Immunol Methods. 2023 Jul;518113486. doi Epub 2023 May 6. J Immunol Methods. 2023. PMID 37156408 Free PMC article. Humoral Immune Response Following SARS-CoV-2 mRNA Vaccination and Infection in Pediatric-Onset Multiple Sclerosis. Breu M, Lechner C, Schneider L, Tobudic S, Winkler S, Siegert S, Baumann M, Seidl R, Berger T, Kornek B. Breu M, et al. Pediatr Neurol. 2023 Jun;14319-25. doi Epub 2023 Mar 2. Pediatr Neurol. 2023. PMID 36966598 Free PMC article. SARS-CoV-2-reactive antibody waning, booster effect and breakthrough SARS-CoV-2 infection in hematopoietic stem cell transplant and cell therapy recipients at one year after vaccination. Piñana JL, Martino R, Vazquez L, López-Corral L, Pérez A, Chorão P, Avendaño-Pita A, Pascual MJ, Sánchez-Salinas A, Sanz-Linares G, Olave MT, Arroyo I, Tormo M, Villalon L, Conesa-Garcia V, Gago B, Terol MJ, Villalba M, Garcia-Gutierrez V, Cabero A, Hernández-Rivas JÁ, Ferrer E, García-Cadenas I, Teruel A, Navarro D, Cedillo Á, Sureda A, Solano C; Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group GETH-TC. Piñana JL, et al. Bone Marrow Transplant. 2023 May;585567-580. doi Epub 2023 Feb 28. Bone Marrow Transplant. 2023. PMID 36854892 Free PMC article. References Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, Sasso JM, Gregg AC, Soares DJ, Beskid TR, Jervey SR, Liu C. 2020. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci 6591–605. doi - DOI - PMC - PubMed Van Caeseele P, Bailey D, Forgie SE, Dingle TC, Krajden M, COVID-19 Immunity Task Force. 2020. SARS-CoV-2 COVID-19 serology implications for clinical practice, laboratory medicine and public health. CMAJ 192E973–E979. doi - DOI - PMC - PubMed Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, Adriano A, Beese S, Dretzke J, Ferrante di Ruffano L, Harris IM, Price MJ, Dittrich S, Emperador D, Hooft L, Leeflang MM, Van den Bruel A, Cochrane COVID-19 Diagnostic Test Accuracy Group. 2020. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 6CD013652. doi - DOI - PMC - PubMed Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, Liao P, Qiu J-F, Lin Y, Cai X-F, Wang D-Q, Hu Y, Ren J-H, Tang N, Xu Y-Y, Yu L-H, Mo Z, Gong F, Zhang X-L, Tian W-G, Hu L, Zhang X-X, Xiang J-L, Du H-X, Liu H-W, Lang C-H, Luo X-H, Wu S-B, Cui X-P, Zhou Z, Zhu M-M, Wang J, Xue C-J, Li X-F, Wang L, Li Z-J, Wang K, Niu C-C, Yang Q-J, Tang X-J, Zhang Y, Liu X-M, Li J-J, Zhang D-C, Zhang F, Liu P, Yuan J, Li Q, Hu J-L, Chen J, et al. 2020. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26845–848. doi - DOI - PubMed Kofler N, Baylis F. 2020. Ten reasons why immunity passports are a bad idea. Nature 581379–381. doi - DOI - PubMed MeSH terms Substances LinkOut - more resources Full Text Sources Atypon Europe PubMed Central PubMed Central Other Literature Sources scite Smart Citations Medical Genetic Alliance MedlinePlus Health Information Miscellaneous NCI CPTAC Assay Portal
CoronavirusAg Rapid Test Cassette (Swab) adalah ujian imunokromatografi in vitro untuk pengesanan kualitatif antigen rotein nukleokapsid dari SARS-CoV-2 dalam spesimen swab nasofaring (NP) secara langsung atau setelah sapuan tersebut ditambahkan ke media pengangkutan viral dari individu yang disyaki COVID-19 oleh penyedia penjagaan kesihatan
Petugas memeriksa beberapa sampel PCR COVID-19 ilustrasi. JAKARTA - Pendistribusian vaksin SARS-CoV-2 alias Covid-19 tengah berlangsung. Di tengah kondisi itu, banyak pertanyaan bermunculan terkait seberapa besar kekebalan tubuh seseorang yang pernah terpapar Covid-19. Menurut Muhammad Irhamsyah, dokter spesialis patologi di Klinik Primaya Hospital Bekasi Barat dan Bekasi Timur, ada metode untuk memeriksanya. Kekebalan tubuh terhadap Covid-19 bisa diketahui melalui tes antibodi SARS-CoV-2 kuantitatif. "Pemeriksaan ini dapat dilakukan pada orang-orang yang pernah terinfeksi Covid-19, orang yang sudah mendapatkan vaksinasi, serta dapat digunakan untuk mengukur antibodi pada donor plasma konvalesen yang akan ditransfusikan," ujar Irhamsyah. Tes mendeteksi protein yang disebut antibodi, khususnya antibodi spesifik terhadap SARS-CoV-2. Prinsipnya menggunakan pemeriksaan laboratorium imunoserologi pada sebuah alat automatik autoanalyzer untuk mendeteksi antibodi itu. Pemeriksaan ini biasa disebut dengan ECLIA Electro chemiluminescence immunoassay. ECLIA mendeteksi, mengikat, serta mengukur antibodi netralisasi, yaitu antibodi yang berikatan spesifik pada struktur protein Spike SARS-CoV-2. Protein itu terdapat pada permukaan virus Covid-19 sebelum memasuki sel-sel pada tubuh. Pengukuran menggunakan label-label yang berikatan spesifik dengan antibodi netralisasi. Jenis sampel yang digunakan yakni sampel serum dan plasma. BACA JUGA Ikuti News Analysis News Analysis Isu-Isu Terkini Perspektif Klik di Sini
. og94h579p6.pages.dev/387og94h579p6.pages.dev/582og94h579p6.pages.dev/410og94h579p6.pages.dev/211og94h579p6.pages.dev/24og94h579p6.pages.dev/216og94h579p6.pages.dev/61og94h579p6.pages.dev/539og94h579p6.pages.dev/821og94h579p6.pages.dev/653og94h579p6.pages.dev/461og94h579p6.pages.dev/491og94h579p6.pages.dev/866og94h579p6.pages.dev/903og94h579p6.pages.dev/882
anti sars cov 2 kuantitatif